Un site internet à découvrir ou redécouvrir.

Publié le 2 décembre 2008
Version espagnole

Elles ont bercé nos premiers pas en géométrie et calcul différentiel, et pourtant aujourd’hui elles sont souvent absentes des cursus universitaires : ce sont les courbes et surfaces remarquables, la lemniscate de Bernoulli, la parabole semi-cubique, la brachistochrone… Un site ouaibe remarquable (et en français) leur est consacré : www.mathcurve.com. C’est un lieu de promenade agréable pour les moments de loisir de l’amateur de jolies formes, et une source d’exemples inépuisable pour l’enseignant.

ÉCRIT PAR

Jean-Yves Briend

Maître de conférences - Université de Provence

Commentaires

  1. captainAlba
    décembre 9, 2021
    9h51

    En math sup , nous avons eu ce genre d’exercice vicieux (merci Monsieur Richard 😀 ) :
    « On vous donne trois cercles de biseaux de même rayon. La courbure du triangle concave obtenu est-elle égale à celle d’un hypocycloïde à trois sommets ? Si oui, quelle en est la preuve ? »

    J’ai tout de suite pensé à un deltoïde vu sur https://www.mathcurve.com/courbes2d.gb/deltoid/deltoid.shtml et sur Upme.fr pour résoudre cet exercice.

    On dirait qu’un hypocycloïde à trois sommets, aussi appelé deltoïde, est constitué des arcs de trois cercles, mais ce n’est pas le cas. Voici un deltoïde en bleu, et un cercle passant par deux sommets et un « point milieu » entre eux en rouge (voir image 1 en pj).

    La courbure du triangle concave dont les côtés sont des arcs de trois cercles de rayon égal est constante étant les réciproques de ce rayon.

    Un deltoïde n’a pas une courbure constante.

    Une évolution d’une courbe est constituée des centres de courbure de cette courbe.

    Dans le cas de l’arc de cercle, l’évolution est constituée uniquement du centre de ce cercle. Ainsi pour le triangle concave dont les côtés sont des arcs de trois cercles, son évoluée est constituée des centres de ces cercles.

    L’évolution d’un deltoïde est, étonnamment, un autre deltoïde.

Écrire un commentaire

Il est possible d’utiliser des commandes LaTeX pour rédiger des commentaires — mais nous ne recommandons pas d’en abuser ! Les formules mathématiques doivent être composées avec les balises .
Par exemple, on pourra écrire que sont les deux solutions complexes de l’équation .

Si vous souhaitez ajouter une figure ou déposer un fichier ou pour toute autre question, merci de vous adresser au secrétariat.