Le premier Congrès International des Mathématiciens a eu lieu en 1897 à Zürich. Images des mathématiques a déjà consacré un article aux circonstances historiques de cette initiative. A l’époque, il y avait beaucoup moins de mathématiciens : quelques centaines tout au plus. Il n’y avait pas Internet, les serveurs de prépublications n’existaient pas, il n’y avait pas d’avions… La communication entre les mathématiciens était très difficile. Ces colloques représentaient une occasion exceptionnelle de se rencontrer et surtout de s’informer sur les résultats des collègues étrangers.
Au fil des années, l’affluence aux Congrès Internationaux a augmenté de manière impressionnante : selon Wikipedia le congrès de Madrid en 2006 a réuni 4500 participants ! Mais un Congrès international, c’est aussi l’occasion d’organiser une myriade de colloques satellites dans des villes voisines, à des dates voisines, pour profiter de la présence dans le pays de visiteurs étrangers. Par exemple, dans un domaine qui m’intéresse, il n’y avait pas moins de trois conférences satellites, chacune durant une semaine, dans les trois semaines qui ont précédé le Congrès (qui commence demain à Hyderabad) ! J’ai participé à l’une d’entre elles et j’ai été étonné de constater que l’immense majorité des collègues présents ne vont pas participer au Congrès principal. Plusieurs raisons sont avancées en général. La première est tout simplement la fatigue : suivre 5 ou 6 conférences d’une heure chaque jour de la semaine, pendant une semaine, puis une autre, puis une autre, c’est éreintant et peu productif à la longue. La seconde est la spécialisation : beaucoup de collègues estiment qu’ils ont suffisamment d’informations sur leur domaine d’intérêt spécifique par d’autres canaux, comme internet par exemple. Bien sûr, un Congrès International qui traite de tous les aspects des mathématiques pourrait être une occasion parfaite de s’informer sur les disciplines auxquelles nous ne sommes pas habitués. Mais beaucoup disent que le Congrès est une grande messe dans laquelle trop d’exposés sont beaucoup trop techniques pour être accessibles aux mathématiciens non spécialistes. Quant à moi, je ne suis pas de cet avis ; j’ai assisté à beaucoup de conférences exceptionnelles dans les Congrès précédents. Et puis, il ne faut pas oublier le côté rituel. Se réunir tous les quatre ans, se réjouir ensemble des progrès accomplis, expliciter les problèmes qui semblent importants, tout cela peut souder une communauté. Beaucoup de mathématiciens sont fiers de l’unité de leur discipline.
Il n’empêche qu’il est peut-être temps de repenser la nature des colloques de mathématiques. Les mathématiciens sont les derniers scientifiques à fonctionner sur le principe général de conférences qui durent une heure (ou parfois 45 minutes). D’un côté, c’est souvent le temps nécessaire pour entrer un peu dans les détails d’une démonstration, mais d’un autre côté c’est aussi la porte ouverte à des exposés techniques souvent incompréhensibles. Je n’ai bien sûr pas de solution miracle à proposer. Un exemple d’une tentative de modification du format est proposé par l’American Institute of Mathematics, qui est un institut privé fondé en 1994 par deux « business men » de la Silicon Valley en Californie, intéressés par les maths. Les ateliers qu’ils organisent sont particuliers et l’idée est plutôt d’essayer de travailler ensemble sur un projet plutôt que de se contenter d’informer les collègues de ses propres progrès. Le « style » de ces réunions est expliqué ici : deux exposés le matin puis une après-midi consacrée à des séances de travail en petits groupes. Ce n’est bien sûr pas adapté à toutes les situations mais il s’agit d’une innovation intéressante par rapport à un système de colloques qui n’a guère changé depuis 1897 ! Il nous faudra trouver d’autres modes opératoires.
Mais je me réjouis de participer au Congrès d’Hyderabad ; je compte bien essayer de m’accrocher et apprendre le plus possible de maths la semaine prochaine. Sans oublier le principal : Internet ne remplacera jamais les rencontres personnelles.
Post-scriptum
Le logo de ce billet reproduit l’affiche du Congrès de Zürich en 1897.
Il est possible d’utiliser des commandes LaTeX pour rédiger des commentaires — mais nous ne recommandons pas d’en abuser ! Les formules mathématiques doivent être composées avec les balises .
Par exemple, on pourra écrire que sont les deux solutions complexes de l’équation .
Si vous souhaitez ajouter une figure ou déposer un fichier ou pour toute autre question, merci de vous adresser au secrétariat.